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ropy of the repulsive wall of the HF + inert gas potentials
remains unchanged with varying heights on the wall, and
also for different inert gases, '3

The state-to-state cross sections reported here have
additionally been found to scale according to a relation-
ship based on the energy corrected sudden approxima-
tion. 1 It was necessary to fit upward (J<J’) and down-
ward (J>J') cross sections separately, the effective
collision length being [,=1.3 A and 9 &, respectively.

Details of the experimental technique and further re-
sults will be presented in a forthcoming paper.
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The dynamics of molecular photoionization have re-

cently been shown! to vary rapidly with internuclear sep-

aration in the presence of a shape resonance. In a pro-
totype calculation® on the 30, photoionization channel of
N,, the ¢, resonance shifted by > 10 eV and exhibited

large, asymmetric variations in intensity and width over

a range in R spanning the ground vibrational state of N,.
This leads to a breakdown in the Franck—Condon (FC)

J. Chem. Phys. 72(11), 1 June 1980

separation and was predicted! to cause non-FC vibra-
tional intensities and v-dependent photoelectron angular
distributions. The effect of shape resonances on vibra-
tional branching ratios has been confirmed experimen-
tally in connection with the analogous f-wave-dominated
o resonances in the 5¢ channel® of CO and the 3o, chan-
neld of N,. By contrast, the available data*™ on vibra-
tionally resolved photoelectron angular distributions in
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shape-resonant channels is too fragmentary to establish
the pattern of the shape resonance effect. Here we re-
port measurements of vibrationally resolved photoelec-
tron angular distributions for the 5¢ channel in CO, per-
formed in the range 16 eV = hy = 26 eV utilizing syn-
chrotron radiation, in order to establish the gross pat-
tern of variation of the asymmetry parameter 8 in the
vicinity of the ¢ shape resonance at hy ~24 V.11 Ag
discussed below, unresolved autoionization structure,
also capable of producing v-dependent 8s, is also ob-
served and partially masks the expected shape-reso-
nance effect. Although mainly a compilation in this par-
ticular study, detailed studies of resolved autoionization
effects are of great importance and are being pursued
separately.

The instrument used in this work is described in de-
tail elsewhere.?%!® Briefly, it consisted of the high-
flux, 2 m, normal-incidence monochromator!’ at the
Synchrotron Ultraviolet Radiation Facility (SURF-II) of
the National Bureau of Standards, together with a rotat-
able, 2 in. mean-radius hemispherical electron energy
analyzer.!® The combination of 0.8 A photon bandpass
and ~100 meV analyzer resolution resulted in an overall
resolution sufficient to resolve the 0,27 eV vibrational
structure in the CO* X22* band. To determine the pho-
toelectron asymmetry parameter 3, three spectra span-
ning the v =0~3 peaks in the XZ* band of CO* were re-
corded at 8 =0°, 45°, 90°, The error bars in Fig. 1
denote the uncertainties in a computer fit to the vibra-
tional peaks in the experimental spectrum plus the dif-
ferences in 8 values derived from the (0°, 45°) and
(0°, 90°) sets of data.

The wavelength dependence of the 8s for the first four
vibrational levels of CO* X%" is given in Fig. 1, We
note that the v =0 curve is rather flat and agrees, within
combined stated errors, with the vibrationally unre~

solved data of Marr ef al.' and the multiple-scattering
calculations of Wallace ef al.?® and that a systematic
tendency to be slightly higher than the vibrationally un-
resolved data!® reflects the small admixture of the higher
vibrational levels which were resolved in this work.
Also note the good agreement with the He1 data of Han-
cock and Samson’ for v =0 and 1. In interpreting the
gross patterns in the data, we follow the discussion of
the vibrational branching ratios in Ref. 2 by tentatively
defining two spectral regions with different dominant
effects. Below ~21 eV, we presume the main vibration-
al effects are caused by unresolved autoionization struc-
ture and threshold effects associated with the B2S* state
of CO" at 19.7 eV (although shape resonance effects are
also likely to extend into this region). Above 21 eV, we
assume® the structure is caused mainly by the shape
resonance centered at ~24 eV.!°"® Focussing briefly on
the “autoionization” region below ~21 eV, we note that

a broad dip occurs in 8 for each vibrational level, with
a successively deeper minimum centered at ~19 eV,
Although this is similar to the structure in the “shape-~
resonance” region discussed below, it is significantly
different in that this gross structure is comprised of un-
resolved series of autoionizing structures. Separate
studies on a much finer energy mesh are being pursued
to study details of individual autoionizing structures.
Above ~ 21 eV, we believe the present data are the first
to map the pattern of variation of v-dependent Bs directly
reflecting the effects of a shape resonance. The follow-
ing pattern emerges, as illustrated by the hand-drawn
dashed lines in Fig, 1: First, the v =0 curve is rela-
tively flat at B~1. The vibrationally unresolved datal!®
(dominated by the v=0 component) exhibits a broad,
shallow dip at ~28-30 eV, in agreement with theory. 2
Second, the v=1 curve is substantially lower above

22 eV and exhibits a discernible minimum at ~ 24 eV,

the position of the shape resonance, Third, the v=2
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curve continues the pattern of a deeper dip (note the or-
dinate scale change on the lower part of Fig, 1) centered
at lower photon energy. Finally, the v=3 curve, al-
though of marginal statistical significance due to the
vanishingly small branching ratio, appears to indicate
a deeper plunge, We emphasize that our interpretation
of this pattern as a shape resonance effect is tentative,
as we cannot definitely rule out influence by weak auto-
ionization structure in this spectral range®; however,
the interpretation is plausible in view of related de-
finitive work on vibrational branching ratios, particu-
larly Refs. 1 and 3, and qualitative agreement of the
present results with recent multiple-scattering model
calculations®? further supports this interpretation.

To summarize, we have observed v -dependent angular
distributions in the 50 channels of CO, which we inter-
pret as arising from unresolved autoionization structure
below ~21 eV and from the ¢ shape resonance above this
energy. Although the shape resonance will probably
affect the vibrational state 8s all the way to threshold,
this would probably take the form of a general shift of
B{v) and would be masked by the autoionization struc-
ture, as was observed in the earlier study? of vibration-
al branching ratios. Of central interest here is the iso-
lated shape resonance effect above hy ~21 eV, taking the
form of a dip in the B curve which is successively lower
in magnitude and photon energy with increasing vibra-
tional quantum number, This is a very noteworthy con-
trast with the closely related case of the 3¢, channel in
N, where theory predicts® a very different pattern, in
particular that 8(v =1)> B(v =0) over the first 25 eV above
threshold. Clearly both theoretical studies of the pres-
ent observation and improvements in the quality and ex-
tent of the experimental evidence is needed to establish
a clear understanding of these newly uncovered shape-
resonance-induced vibrational effects.
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